
World Transactions on Engineering and Technology Education 2003 UICEE
Vol.2, No.2, 2003

 225

INTRODUCTION

Demand for an extensive selection of enterprise and mission-
critical applications, including computing, communications,
space, nation’s air traffic control system, defence, health care,
manufacturing, finance, highway safety, transportation (eg the
Intelligent Vehicle Highway Systems), power generation and
transmission, e-commerce, as well as any others that affect
human safety or well-being, is growing rapidly. This has
motivated the search for new software engineering
methodologies and development strategies.

These new strategies must support the development of
enterprise software applications that are autonomous,
extensible, robust, reliable and capable of being remotely
monitored and controlled. Traditional software engineering
falls short in this regard. Agent-Oriented Software Engineering
(AOSE) has emerged as an attractive alternative for building
enterprise and mission-critical applications; it has also
developed as a cornerstone for enterprise software engineering.

AGENT-ORIENTED SOFTWARE ENGINEERING

Agent-Oriented Software Engineering (AOSE) extends
Component-Based Software Engineering (CBSE). AOSE also
leads to greater flexibility, adaptability and autonomy [1-4].
AOSE, much like CBSE, has great potential to reduce
enterprise software development costs and time-to-market,
while also improving reliability, maintainability and overall
quality of enterprise software systems [1][5][6]. AOSE is based
on developing and evolving software systems from selected
pre-engineered and pre-tested software agent components.

Software agent components (a.k.a. agents) are viewed as next-
generation software components (specialised distributed
components), which offer greater flexibility, adaptability and

autonomy than traditional software components [1]. An agent is
also viewed as an autonomous entity driven by a set of Beliefs,
Desires and Intentions (a.k.a. BDI). Agent components can
exchange messages and operate based on their beliefs and
goals; they are not necessarily implemented using Artificial
Intelligence (AI) technology.

An agent component exhibits a combination of several of the
following characteristics:

• Autonomous: being able to proactively initiate activities

based upon its goals, to act on the behalf of its user and to
exercise control over its actions.

• Adaptable: being able to change its behaviour after
deployment, either by its own learning, user customisation
or downloading new capabilities.

• Mobile: being able to move from one executing context to
another, to continue execution in a new context and to
retain its state to continue its work.

• Collaborative: being able to communicate and cooperate
with other agents to form dynamic or static societies of
agents, collaborating to perform a task.

• Knowledgeable: being able to reason about its goals,
acquired information and knowledge about other agents
and users.

• Persistence: being able to retain its knowledge and state
over an extended time period, system crashes, multiple
sessions, etc [1].

An agent can be classified in one of the following categories,
depending upon the type of function that the agent performs:

• Collaborative agents: Agents communicating and

interacting (eg exchanging messages to negotiate or share
information) with some other agents that represent their
users, organisations and services.

Agent-Oriented Software Engineering (AOSE): its emergence as a cornerstone of
enterprise software engineering education

Gilda Pour

San José State University

San José, United States of America

ABSTRACT: There is a fast growing demand for a wide variety of enterprise and mission-critical applications including computing,
communications, space, air traffic control systems, defence, health care, manufacturing, finance, highway safety, transportation (eg
the Intelligent Vehicle Highway Systems), power generation and transmission, e-commerce and any others affecting human safety or
well-being. Many of those systems are required to be autonomous, extensible, flexible, robust, reliable and capable of being remotely
monitored and controlled. This imposes a key challenge on developing enterprise and mission-critical software systems. Agent-
Oriented Software Engineering (AOSE) has emerged as a viable approach to address this challenge, and also as a cornerstone of
enterprise software engineering. The article discusses the critical need for restructuring enterprise software engineering education by
integrating research and education in AOSE and by building a foundation for life-long learning. The article also presents a strategy
for restructuring software engineering education to help narrow the gap between what the vast majority of software engineering
education programmes offer and what the real world expects of graduates of software engineering education programmes.

 226

• Mobile agents: Agents visiting remote sites to collect
information before returning with the results, and
aggregating and analysing data, or exercising local control.

• Personal agents: Agents interacting directly with a user,
presenting some personality or character, monitoring and
adapting to its user’s activities, learning the user’s style
and preferences, and automating or simplifying certain
tasks [1].

Agent components and infrastructure have great promise in
significantly increasing the dependability of enterprise and
mission-critical applications, primarily because of certain
fundamental elements that are typically associated with agents,
such as autonomy, adaptability and collaboration.

Furthermore, agent-oriented software engineering methods and
technology provides a basis for engineering autonomic, self-
managing, self-healing and self-tuning systems that are able to
dynamically adjust and reconfigure themselves in response to
changes in their environment.

NEW ROLES AND NEW COMPETENCES

Due to its nature, AOSE requires new software engineering
roles and new competences that are significantly different in
many ways from those in traditional software engineering.

New software engineering roles within AOSE are classified
under the following two domains, namely:

• Agent Component System Engineering (ACSE)
• Multi-Agent System Engineering (MASE)

ACSE deals with the development of agent components, while
MASE handles the development of multi-agent systems. Each
domain requires a different set of competences. The ACSE
lifecycle includes the following major phases:

• Agent component requirements determination and analysis;
• Agent component design;
• Agent component implementation;
• Agent component testing;
• Agent component maintenance and evolution.

The design phase in the ACSE lifecycle deals with the design
of agent component systems. The issues that need to be
addressed in the design phase depend on the category of the
agent. For example, in the design of mobile agents, software
engineers need to deal with additional complexity due to
security concerns associated with agent mobility.

The MASE lifecycle includes the following phases:

• Multi-agent system requirements determination and

analysis;
• Selection and customisation of a set of agents;
• Selection and customisation of multi-agent system

architectures;
• Multi-agent system integration;
• Multi-agent system testing;
• Multi-agent system maintenance and evolution.

The design phase in the MASE lifecycle includes the selection
and customisation of both agents and multi-agent system

architectures. The multi-agent system architecture presents
agent components as interacting service provider or consumer
entities. It also facilitates agent operations and interactions
under environmental constraints, and also allows agents to take
advantage of available services and facilities. The design of
multi-agent systems must deal with the following aspects:

• Agent-to-agent communications that involve agent’s

FIPA-complaint messages, conversation protocols,
message content, standard/dynamic ontology (agent
vocabularies), and coordination between agents and/or
groups of agents;

• An agent platform that provides basic capabilities of
multi-machine agent transport, agent lifecycle
management, and interfaces to application services, such
as those provided by the J2EE, .NET or OS;

• Standard service agents that provide capabilities for the
support of dynamic agent creation and discovery;

• Agent-to-service interfaces that provide standardised agent
interfaces to non-agent capabilities;

• Agent internals that specify the way agents deal with
events, communicate among subsystems, set-up and run
behaviours autonomously, deal with exceptions, and
monitor and react to interactions with other agents.

Multi-agent system integration is the replacement for the
implementation phase. While the implementation phase in
traditional software engineering requires extensive
programming in order to build enterprise systems from scratch,
the multi-agent system integration phase involves developing
agent wrappers and mediators in order to support interactions
among agents within a system and outside of the system.

The multi-agent system testing phase requires the integration
testing of a software system that is an assembly of a set of
software agents that have been developed by different
developers, independent of one another. The challenges faced
in system integration testing, maintenance and evolution are
mainly due to the lack of confidence in, and understanding of,
agents built by other developers [7].

There are also other new roles and competences for dealing
with legal issues associated with development and usage of
agent-oriented software systems, as well as with the marketing
and sales of those systems. Legal issues involve intellectual
property law for copyrights and patents, legal liability,
licensing, support and warranties. The legal system of
intellectual property rights and liabilities profoundly affects the
economic viability and course of new technologies [8].

STRATEGIES FOR RESTRUCTURING SOFTWARE
ENGINEERING EDUCATION

Due to the major differences between the software engineering
roles and competences required in agent-oriented software
engineering, and those required in the traditional software
engineering, restructuring software engineering education is
inevitable. Restructuring efforts need to emphasise the
following elements:

• Building a solid foundation for life-long learning;
• Integrating agent-oriented software engineering research

and education into the enterprise software engineering
curricula;

 227

• Partnering with industry in education and research;
• Integrating diversity into the programme.

Building a Foundation for Life-Long Learning

Software technologies crop up quickly and the role of
Information Technology (IT) is constantly changing. This
necessitates any software engineering education programme to
facilitate the process of building a solid foundation for effective
life-long learning for their students [9]. This can be achieved by
enabling students to do the following:

• Recognise the crucial need for life-long learning;
• Actively engage in life-long learning throughout their

career.

In order to help students recognise the crucial need for life-long
learning, the importance and necessity of upgrading their
knowledge and skills should be discussed in software
engineering classes. In addition, students should study the
impact of a rapidly evolving and highly diversified world of
enterprise software technology on a software engineering
career.

Other factors that need to be accentuated in software
engineering education include the following:

• Broader understanding of the impacts of information

technology competence on one’s career;
• Systematic thinking;
• Cooperative problem solving;
• Ability to communicate effectively;
• Systems view of problem solving;
• Technical and economic decision-making required in

enterprise software engineering.

In order to help students acquire the ability to seek, evaluate
and use information not directly provided by assigned texts
and lectures, the following two main factors should be
considered:

• Having a solid foundation of fundamental knowledge and

skills;
• Knowing how to acquire and effectively learn new

materials on one’s own.

The first factor should be well integrated into software
engineering curricula with special emphasis on learning the
required fundamental concepts, systematic thinking through
engineering problems, as well as integrating and applying
knowledge so as to solve those problems.

With regard to the second factor, students need to learn how to
learn. The term, learn how to learn, has the following three
distinct meanings:

• How to be a better student;
• How to conduct inquiry and construct knowledge in

his/her discipline or field;
• How to be a self-directing learner [10].

Table 1 shows the learning objectives for learn how to learn
and a list of course activities in order to meet each of the
learning objectives.

Table 1: Key learning objectives and course activities in order
to meet the objectives for learn how to learn.

No.
Learning

Objectives
Course Activities to Meet the

Learning Objectives
1 Students

will learn
how to be
a better
student.

• Students are given assignments that
require students to seek, read,
evaluate and use information and
materials beyond the texts and
lectures.

• Students are required to participate
in class discussions and brain-
storming practises in small groups.

• Students are provided tips on how
to get organised for learning on
their own and how to engage in
active and cooperative learning.

2 Students
will learn
how to
conduct
inquiry and
construct
knowledge
in their
own
discipline
or field.

• Students are given assignments that
require them to formulate questions
and then to work on answering them.

• Students learn and practise how to
search for and identify relevant
information and then analyse that
information in order to answer a
question or solve a problem.

• Students are required to discuss
what was learned and how it was
learned as a part of their
participation in class discussions
and activities.

3 Students
will learn
how to
become a
self-
directing
learner.

• Students are given assignments that
require them to reflect on their own
learning and also prompt them to
explore the impact of their own
learning processes on how they
should teach in the future.

• Students are given assignments that
require them to do the following:

- Develop a learning agenda by
engaging in thinking towards
the future and identifying what
else they need or want to learn.

- Develop a plan of action by
identifying specific actions for
learning the items on their
learning agenda. Specific
action could be talking to an
expert or experienced person,
reading a book on the topic,
finding information in technical
publications, observing or
practising something.

In order to help students learn and enhance the skills required
for life-long learning, the author recommends engaging
students in curricular and extracurricular activities that include
the following:

• Predicting the development of future software

technologies through various research tools and models.
• Recognising and comparing various approaches in order to

solve real-world software engineering problems.
• Recognising the constraints of different approaches.

 228

• Discussing trade-off decision-making with respect to
different approaches in order to solve various software
engineering problems.

• Learning and enhancing one’s effective listening and
communication skills, as well as critical reading, thinking
and writing skills.

Integrating Research and Education

In order to narrow the gap between what the vast majority of
software engineering education programmes offer and what the
real world expects of graduates of software engineering
education programmes, it is essential to integrate AOSE
research into the enterprise software engineering education.
Learning serves as the bridge that connects research.

The research may be drawn from an ongoing or a completed
project, and also from projects led by software engineering
professor or by others. The author has integrated her own
research with her teaching [2-4][11][12]. She has also
incorporated others’ research [13][14]. A large, diverse body of
students has ranked this effort most beneficial.

Partnering with Industry in Education and Research

Industry has long experienced the lack of adequate preparation
of too many software engineering graduates [9][15].
Universities have long experienced the tension between an
internal value system that emphasises education in enduring
principles and the demands of industry for training in current
technologies; neither extreme is appropriate [9][15][16]. The
emphasis on the long-term view is what differentiates the
partnership in education from a training exercise [9]. Indeed,
the goal of industry-academic partnership needs gain the best of
both worlds: industrial involvement and advice and academia’s
long-term view of what makes a quality engineering education
[9].

Integrating Diversity into the Programme

It is crucial to the vitality of engineering that students learn how
to be a productive member of a diverse workforce. Such
learning opportunities can be provided through forming diverse
teams to work on various team-based projects and assignments.

CONCLUDING REMARKS

As software becomes ubiquitous and plays an ever increasingly
important role in systems of great significance, making
software engineering education flexible and responsive to
technological changes becomes more critical. The enduring
principles and models at the core of the software engineering
curricula change more slowly than the examples of current
practise; however, they change more rapidly than the core of
other fields. Changes in software technologies and software
development models require proportionate changes in the
software engineering education.

Software engineering education programmes are expected to
produce an adequate supply of proficient software engineers
who are well prepared to develop, deploy, maintain and evolve
a wide variety of agent-based and agent-rich enterprise and
mission-critical software systems. This requires restructuring
software engineering education.

In order to facilitate such restructuring efforts, this article has
presented key strategies that are confirmed to be effective in a
similar effort led by the author. These strategies are mainly for
building a solid foundation for life-long learning, integrating
research and education, establishing industry-academic
partnership in research and education, and integrating diversity
into the programme.

REFERENCES

1. Griss, M. and Pour, G., Accelerating development with

agent components. IEEE Computer, 34, 5, 37-43 (2001).
2. Pour, G., Web-Based Multi-Agent Architecture for

Software Development Formal Peer Inspection. In:
Mohammadian, M. (Ed.), Computational Intelligence for
Modelling, Control, and Automation Series. Burke: IOS
Press (2003).

3. Pour, G. and Guo, Y., A Web service-based architecture
for supply chain management. Internet Computing Series
(2003).

4. Pour, G. and Hong, A., Internet-Based Multi-Agent
Framework for Software Service Retrieval and Delivery.
In: Mohammadian, M. (Ed.), Computational Intelligence for
Modelling and Control Series. Burke: IOS Press (2003).

5. Pour, G., Web-based architecture for component-based
application generators. Internet Computing Series,
403-409 (2002).

6. Pour, G., Component Technologies: Expanding the
Possibilities for Component-Based Development of
Web-Based Enterprise Applications. In: Furht, B. (Ed.),
Handbook of Internet Computing. Boca Raton: CRC Press
(2000).

7. Pour, G., Component-based software development: new
challenges and opportunities. TOOLS Series, IEEE
Computer Society Press, 26, 8, 376-383 (1998).

8. Lowry, D.D. and Lowry, M.R., Legal issues in knowledge
software engineering. Proc. 10th Knowledge-Based
Software Engineering Conference, 61-69 (1995).

9. Pour, G., Griss, M. and Lutz, M., The push to make
software engineering respectable. IEEE Computer, 33, 5,
35-43 (2000).

10. Fink, L.D., Creating Significant Learning Experiences (4th
edn). New York: Wiley (2003).

11. Pour, G., An innovative approach to integrating research
into education in Component-Based Software Engineering
(CBSE). Proc. 6th UICEE Annual Conf. on Engng. Educ.,
Cairns, Australia, 105-108 (2003).

12. Pour, G., Integrating agent-oriented enterprise software
engineering into software engineering curriculum. Proc.
Frontiers in Educ. Conf., Boston, USA (2002).

13. Cowan, D. and Griss, M., Making software agent
technology available to enterprise applications. Proc. 1st
Inter. Workshop on Challenges in Open Agent Systems
(AAMAS’02), Bologna, Italy (2002)

14. Griss, M., Letsinger, R., Cowan, D., Sayers, C., Van Hilst,
M. and Kessler, R., CoolAgent: Intelligent Digital
Assistants for Mobile Professionals - Phase 1 Retrospective.
HP Laboratories Report HPL-2002-55(R) (2002).

15. Shaw, M., Software Engineering Education: a Roadmap.
In: Finkelstein (Ed.), The Future of Software Engineering.
New York: ACM Press (2000).

16. Pour, G., Component-based development refining the
blueprint of software engineering education. World Trans.
on Engng. and Technology Educ., 2, 1, 45-48 (2003).

	Agent-Oriented Software Engineering (AOSE): its emergence as a cornerstone of enterprise software engineering education

